

LA-UR-19-30850

Approved for public release; distribution is unlimited.

Title: Polymer Equations of State and Shock-Driven Decomposition

Author(s): Coe, Joshua Damon

Intended for: Carbon in Extreme Conditions, 2019-10-28/2019-10-30 (Santa Fe, New

Mexico, United States)

Issued: 2019-11-05 (rev.1)

Polymer Equations of State and Shock-Driven Decomposition

Josh Coe Physics & Chemistry of Materials (T-1) Los Alamos National Laboratory

October 28, 2019

Polymer Hugoniots Display Structure

- Derivative discontinuities at $u_p \sim 3$ km/s (typically $P \sim 25$ GPa)
 - Middle line segment not at equilibrium

LA-13006-MS, LANL (originally prepared in 1977)

Polymer Hugoniots Display Structure

- Derivative discontinuities at $u_p \sim 3$ km/s (typically $P \sim 25$ GPa)
 - Middle line segment not at equilibrium
- Volume collapse in P-V
 - Degree of collapse correlates qualitatively with chemical structure

Material name	$P_{\mathbf{threshold}}$ (GPa)	$\Delta V_{ m tr}/V(\%)$
epoxy	23.1	3.9
PMMA	26.2	3.4
PTFE	41.6	1.1
PE (linear)	24.7	0.4
polycarbonate	20.0	11.4
phenolic	23.2	6.7
polysulfone	18.5	12.9
polyurethane	21.7	7.3

LA-13006-MS, LANL (originally prepared in 1977)

Hugoniot Structure: Two Early Views

- Phase transition (LANL, 1977)
 - analogous to graphite → diamond
 - "compression...is two-dimensional in nature" below the transition, "more typical of a three-dimensional solid" above

Hugoniot Structure: Two Early Views

- Phase transition (LANL, 1977)
 - analogous to graphite → diamond
 - "compression...is two-dimensional in nature" below the transition, "more typical of a three-dimensional solid" above
- Decomposition (LLNL, 1979)
 - "..hydrocarbons at high pressure (≥10 GPa) and high temperature (≥1000 K) dissociate into carbon in the diamond phase and hydrogen in a condensed molecular phase"

Hugoniot Structure: Recovery Experiments

- Experiments on polyethylene and Teflon
- Setup
 - Single-shock, Mach compression
 - Hermetically-sealed capsule
 - Enabled recovery of soot and gases
 - Mass spectrometry, XRD, TEM

Hugoniot Structure: Recovery Experiments

- Experiments on polyethylene and Teflon
- Setup
 - Single-shock, Mach compression
 - Hermetically-sealed capsule
 - Enabled recovery of soot and gases
 - Mass spectrometry, XRD, TEM
- Polyethylene results
 - Polymer recovered at ~20 GPa
 - Gases and soot recovered 28-40 GPa
 - Gases were >80% mol CH₄ and H₂
 - Soot was neither graphite nor diamond

PE: SCCM-1989, p. 687; PTFE: J. Chem. Phys. 80, 5203 (1984)

Unreactive EOS: SESAME Framework

- Purely volumetric, no strength or viscoelasticity
- 3-part decomposition for free energy of each phase

$$F(\rho, T) = \phi(\rho) + F_{\text{ion}}(\rho, T) + F_{\text{elec}}(\rho, T)$$

Minimize F as function of mass fractions \rightarrow equilibrium phase boundaries

Unreactive EOS: SESAME Framework

- Purely volumetric, no strength or viscoelasticity
- 3-part decomposition for free energy of each phase

$$F(\rho, T) = \phi(\rho) + F_{\text{ion}}(\rho, T) + F_{\text{elec}}(\rho, T)$$

- Minimize F as function of mass fractions \rightarrow equilibrium phase boundaries
- With regard to polymers:
 - Electronic part not that important for $\rho/\rho_0 \lesssim 3$
 - Ionic models are variations on Debye
 - Cold curve extracted from fit to shock data
 - This produces artifacts if data above cusp included

Thermochemical Modeling

- Decomposition products as mixture of fluids and bulk solids
 - Each constituent has its own free energy model
 - Fluids: spherical, pairwise interaction potential translated to free energy with perturbation theory
 - Solids: SESAME model.
 - Mixture rule required (non-unique)

Thermochemical Modeling

- Decomposition products as mixture of fluids and bulk solids
 - Each constituent has its own free energy model
 - Fluids: spherical, pairwise interaction potential translated to free energy with perturbation theory
 - · Solids: SESAME model
 - Mixture rule required (non-unique)
- Assume full thermodynamic (and thus, chemical) equilibrium
 - Adjust concentrations until minimal free energy found and stoichiometry preserved
- Reaction energy (E₀) tuned to fit shock data

See talks by Leiding, Ticknor

PMDI Polyurethane: Approach

- Shock data for polyurethane at 0-75% porosity
- Thermochemical modeling above some threshold
 - Threshold varies with porosity, unknown a priori
 - Carbon as diamond for full density, as graphite for foams
 - Only adjustable parameter is E_0
- Reactants were SESAME + $P \alpha$ porosity model
 - Only porous parameter is crush pressure, P_c

Dattelbaum & Coe, et al., J. Appl. Phys. 115, 174908 (2014)

PMDI Polyurethane: Full Density Results

- E_0 of products adjusted to match data above transition
- Reactant EOS calibrated to all solid data

Dattelbaum & Coe, et al., J. Appl. Phys. 115, 174908 (2014)

- Porous E_0 same as for solid
 - Good agreement with highest points
- Set P_c=16 kbar
- Products locus to right of reactants

Dattelbaum & Coe, et al., J. Chem. Phys. 115, 174908 (2014)

- Porous E_0 same as for solid
 - Good agreement with highest points
- Set P_c=16 kbar
- Products locus to right of reactants

Dattelbaum & Coe, et al., J. Chem. Phys. 115, 174908 (2014)

- Porous E_0 same as for solid
 - Good agreement with highest points
- Set P_c=16 kbar
- Products locus to right of reactants

Dattelbaum & Coe, et al., J. Chem. Phys. 115, 174908 (2014)

- Porous E_0 same as for solid
 - Good agreement with highest points
- Set P_c=16 kbar
- Products locus to right of reactants
- Approach makes qualitative sense of the pattern
 - Uncertainties are an issue

Transition "Thresholds"

- Roughly exponential drop
- Strong dependence on timescale of experiment

Temperature Usually Increases

- In most cases we find T > 0 upon decomposition
- Foam temperatures very high due to P-V work
- High T observable in "bleached" PDV signal

Dattelbaum and Coe, Polymers (2019)

Product Compositions

- Products dominated by solid carbon and water
- Not much variation over range of gun data or with porosity
- Hard to validate these (see Leiding and Lindsey talks, Jadrich poster)

The Hydrodynamic Connection

"Chemistry" to the Euler equations:

 ΔE and ΔV , smeared out over some Δt

- $-\Delta E$ can be incorporated through EOS or source term
- $-\Delta V$ always incorporated through EOS
- The signs of the Δ 's determine the character of the waveforms
 - The sign of ΔV is important
- Simulating reactive wave profiles involves 3 ingredients:
 - EOS
 - rate model/closure rule
 - integration of the conservation equations

Reactive Wave Profiles: Energetic Materials

- ZND: inert shock followed by reaction zone to CJ state
- Reaction behind feeds the front, strengthening lead shock
- Reaction pushes unsteady → steady

Reactive Wave Profiles: Non-Energetic

- Reaction behind weakens lead shock
- Waves separate rather than converge
- Initial (P1) wave decays, second (P2) wave carries to products
- Decay and rise times contain kinetic information

Reactive Wave Profiles: Organic Liquids

Embedded gauge data for liquid phenylacetylene

Dattelbaum & Sheffield, AIP Conf. Proc. 1426, 627 (2012)

Reactive Wave Profiles: Polymers

First observation of multiwave structure in reacting polymer

Dattelbaum & Coe, et al., J. Appl. Phys. 116, 194308 (2014)

Reactive Wave Profiles: Polymers

increasing sample thickness \rightarrow

- Increased P1-P2 lag \implies wave separation with time
- Dotted lines are simulation with Arrhenius model

R. Huber, et al., submitted to J. Appl. Phys.

"Reactive" Wave Profiles: Metals

Rigg, et al., J. Appl. Phys. (2009)

Reactive Wave Profiles: Foams

PDV in polyurethane foams

- Clockwise from upper left: 30%, 50%, 60%, 75% porous
- One wave observed
- PDV increasingly "washed out" due to high T

Summary

- Polymers decompose under shock loading
 - $u_n \sim 3$ km/s, $P \sim 25$ GPa at full density
- Threshold conditions drop dramatically as porosity increases
 - Products expand upon reaction
- Wave splitting a feature of density-increasing transitions
 - Chemically more like HE, but wave profiles more like phase transitions in metals, etc.
- Papers
 - In progress: polysulfone, PMMA, polyimide
 - Previous: polyethylene (JAP, 2019), overview (Polymers, 2019), polyurethane (JAP, 2014), fiber-filled composites (JAP, 2014), lots of conference proceedings

Acknowledgements

- (LANL Fellow) Dana D
- experiments: Rachel Huber, John Lang, Rick Gustavsen
- simulations: Jeff Peterson, Katie Maerzke
- OpenSesame: Tinka Gammel
- Magpie: Charles Kiyanda, Jeff Leiding, Chris Ticknor, Stephen Andrews
- \$: Science Campaign 2, ASC PEM

Extra Slides

Artificial Multiwave Structure

- Products EOS 97607
- Historical EOS 7603
 - structure included in fit
 - produces multiwave structure
 - structure preserved in isentropes
- Reversibility?

Heterogeneous Materials are Hard

- Not always clear what you're probing
 - Pore diameters span range $\mathcal{O}(10 \ \mu\text{m}-1 \ \text{mm})$
 - Spot size of our standard PDV is roughly 450 μ m
- $U_{\rm S} \approx u_{\rm p}$, so $\sigma(\rho)$ large
- Shot-to-shot variability > known sources of uncertainty
- We have the same problem with powders

Image courtesy of Brian Patterson (MST-7, LANL), data courtesy of John Lang (M-9, LANL)

Detonation Criterion

In order to produce a self-sustaining wave, a material must have a positive thermicity coefficient, σ :

$$\sigma = \left(\frac{\partial P}{\partial \lambda}\right)_{V,E} = \frac{\Delta V}{V} - \frac{\Gamma}{c^2} \Delta H$$

 $\lambda =$ reaction progress variable

 $\Gamma =$ Grüneisen parameter

c =frozen sound speed

 $\Delta H = \text{enthalpy change}$

- Exothermicity ($\Delta H < 0$) isn't sufficient (or even necessary!) for detonation
 - "The importance of the volume term has often been overlooked..."

Fickett and Davis, Detonation: Theory and Experiment

Our Traditional Approach to Polymer EOS

- Fit some shock data
- Assume some characteristic temperature
 - Cold curve by subtraction
- Potential problems:
 - Structure present even at 0K
 - Structure preserved to high T
 - Completely reversible transition
- Thermals often poorly constrained
 - Important for foams

Rate Model Calibration: Theory

Adiabatic induction time for constant-volume burn

$$t_{\rm ad}(T_0) = \frac{T_0^2}{\nu T_a(T_1 - T_0)} e^{(T_a/T_0)}$$

 T_0 = reactant temperature

 $T_1 =$ product temperature

 $\nu =$ frequency factor (parameter)

 $T_a = \text{activation temperature (parameter)}$

- In our case, these are Hugoniot temperatures
- There's a problem when reaction lowers temperature
- Because $T_0 = T_0(u_n)$, we'll consider $t_{ad}(u_n)$

R. Menikoff, LA-UR-17-31024 (2017)

Rate Model Calibration: Practice

- Using 1/(adiabatic induction time) as proxy for rate
 - For a given pair of EOS:
 - T_a sets u_p range
 - $-\nu$ shifts laterally

Simulated Wave Profiles in Polysulfone

 P_{input} =22.1 GPa; transition starts ~18.5 GPa

 Qualitative features good, but experimental reaction signatures (P1 decay, P2 rise) much more subtle